\qquad

1. A construction worker uses a board and log as a lever to lift a heavy rock. If the input arm is 3 meters long and the output arm is 0.75 meters long, what is the mechanical advantage of the lever?
2. A $500-$ Newton box is lifted to a height of 1 meter. Only 50 Newtons of force are needed to lift the box. What is the mechanical advantage of the lever?
3. A lever with an effort distance of 2 meters has a mechanical advantage of 4 . What is the resistance distance?
4. A lever with a mechanical advantage of 6 is used to move a $36-$ Newton load. What input force is needed to move the load with the lever?
5. A child's toy rake is held so that its resistance length is 0.75 meters. If the mechanical advantage is 0.33 , what is the effort distance?

Levers: Mechanical Advantage Calculations

Name: \qquad

1. A construction worker uses a board and \log as a lever to lift a heavy rock. If the input arm is 3 meters long and the output arm is 0.75 meters long, what is the mechanical advantage of the lever?
2. A $500-$ Newton box is lifted to a height of 1 meter. Only 50 Newtons of force are needed to lift the box. What is the mechanical advantage of the lever?
3. A lever with an effort distance of 2 meters has a mechanical advantage of 4 . What is the resistance distance?
4. A lever with a mechanical advantage of 6 is used to move a $36-$ Newton load. What input force is needed to move the load with the lever?
5. A child's toy rake is held so that its resistance length is 0.75 meters. If the mechanical advantage is 0.33 , what is the effort distance?
6. A construction worker uses a board and \log as a lever to lift a heavy rock. If the input length is 3 meters and the output length is 0.75 meters, what is the mechanical advantage of the lever?

$$
I M A=\frac{d_{E}}{d_{R}}=\frac{3 m}{0.75 m}=4
$$

2. A $500-$ Newton box is lifted to a height of 1 meter. Only 50 Newtons of force are needed to lift the box. What is the mechanical advantage of the lever?

$$
A M A=\frac{F_{R}}{F_{E}}=\frac{500 \mathrm{~N}}{50 \mathrm{~N}}=10
$$

3. A lever with an effort distance of 2 meters has a mechanical advantage of 4 . What is the resistance distance?

$$
I M A=\frac{d_{E}}{d_{R}} \quad 4=\frac{2 m}{d_{R}} \quad \mathrm{~d}_{\mathrm{R}}=0.5 m
$$

4. A lever with a mechanical advantage of 6 is used to move a $36-$ Newton load. What input force is needed to move the load with the lever?

$$
A M A=\frac{F_{R}}{F_{E}} \quad 6=\frac{36 N}{F_{E}} \quad \mathrm{~F}_{\mathrm{E}}=6 \mathrm{~N}
$$

5. A child's toy rake is held so that its resistance length is 0.75 meters. If the mechanical advantage is 0.33 , what is the effort distance?

$$
I M A=\frac{d_{E}}{d_{R}} \quad 0.33=\frac{d_{E}}{0.75 m} \quad \mathrm{~d}_{\mathrm{E}}=0.25 m
$$

