\qquad

Let's Review

Complete the table listing outcomes when finding the sum of two dice.

+	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

Write the probabilities as fractions, decimals, and percents.

1. $P(7)$
2. P (odd)
3. P (more than 6)
4. P (more than $6 \underline{\text { or }}$ even)
5. P (more than 6 and even)
\qquad

Make and complete a table listing outcomes when finding the product of two spins. $($ red $=1$, yellow $=2$, green $=4$, blue $=5)$

Write the probabilities as fractions, decimals, and percents.
6. $P(1)$
7. P (odd)
8. P (more than 10)
9. P (more than $2 \mathbf{o r}$ odd $)$
10. P (more than 3 and even)
\qquad

Biology rules!

Complete a tree diagram and a sample space chart for problems 1 and 2.

1. What is the probability that a family will have two boys if they have two children?
2. What is the probability that a family will have two boys and a girl (in no particular order) if they have three children?
3. What is the probability that a family with three children will have a boy first, then a girl, and finally a boy? Clue: Use the chart from problem 2 to answer this.
4. How many possible outcomes are there for a family of four children?
5. What is the probability that the first child in any family will be a girl?

Name: \qquad

I could be a biologist!

Key terms:

phenotype: physical appearance (example: eye color) genotype: genetic makeup (examples: $\mathrm{BB}, \mathrm{Bb}, \mathrm{bb}$)
homozygous: same (example: BB or bb)
heterozygous: different (example: Bb)
dominant: uppercase letter (B)
recessive: lowercase letter (b)
To determine the phenotype (physical appearance) of someone, you can cross traits of potential parents to find the theoretical probability of a certain trait being passed on to the offspring. Using a Punnett square is an easy way to do this by using the genotypes (genetic makeup) of the parents.

Complete the Punnett square to determine the probability of each event:

Cross: (cat) homozygous dominant - black-haired homozygous recessive - white-haired black (BB) White (bb)

	B	B
b		
b		

1. P (BB)
2. P (bb)
3. $\mathrm{P}(\mathrm{Bb})$

Cross: (human) heterozygous dominant - curly-haired homozygous recessive - not curly-haired Curly (Cc) Not curly (cc)

	C	c
c		
c		

4. P (curly)
5. P (not curly)

Name: \qquad

Create Punnett squares for the following problems:

What if you looked at a second-generation offspring (homozygous recessive $=\mathrm{cc}$) and crossed it with a person with the same genotype (cc)? What would be the theoretical probability for the following:
6. P (Cc)
7. P (CC)
8. P (cc)
9. A widow's peak hairline is dominant; a straight hairline is recessive. If the mother is heterozygous for the widow's peak and the father is homozygous recessive, what is the probability that their offspring will have a widow's peak? Show your work.

